文章详情
所在位置: 首页> 技术文章> 技术>

实际应用中的谐波改善和无功补偿

日期:2024-03-19 04:28
浏览次数:2987
摘要:1. 概述 公共电网和工业电网中的谐波量逐渐增加是全世界共同的趋势,很明显地,这和工业应用及商用建筑大楼中大量使用非线性负载和设备有着直接的关系。这些非线性设备通常为晶闸管或二级管整流器,它们将导致电网中的电力品质下降,常可出现在下列行业应用实例中。 * 变速驱动装置(VSD),用于: - 制造业和加工业 - 冶金工业中的感应加热 - 商业建筑中的电梯、空调泵、风机 * 商业和工业建筑楼房中的计算机及其它重要负载所用的不间断电源(UPS)
2. 谐波的影响
2.1 变压器
对变压器而言,谐波电流可导致铜损和杂散损增加,谐波电压则会增加铁损。与纯正基本波运行的正弦电流和电压相较,谐波对变压器的整体影响是温升较高。须注意的是; 这些由谐波所引起的额外损失将与电流和频率的平方成比例上升,进而导致变压器的基波负载容量下降。而当你为非线性负载选择正确的变压器额定容量时,应考虑足够的降载因子,以确保变压器温升在允许的范围内。还应注意的是用户由于谐波所造成的额外损失将按所消耗的能量(仟瓦一小时)反应在电费上,而且谐波也会导致变压器噪声增加。

2.2 电力电缆
在导体中非正弦波电流所产生的热量与具有相同均方根值的纯正弦波电流相较,则非正弦波会有较高的热量。该额外温升是由众所周知的集肤效应和邻近效应所引起的,而这两种现象取决于频率及导体的尺寸和间隔。这两种效应如同增加导体交流电阻,进而导致I2Rac损耗增加。

2.3 电动机与发电机
谐波电流和电压对感应及同步电动机所造成的主要效应为在谐波频率下铁损和铜损的增加所引起之额外温升。这些额外损失将导致电动机效率降低,并影响转矩。当设备负荷对电动机转矩的变动较敏感时,其扭动转矩的输出将影响所生产产品的质量。例如: 人造纤维纺织业和一些金属加工业。对于旋转电机设备,与正弦磁化相比,谐波会增加噪音量。像五次和七次这种谐波源,在发电机或电动机负载系统上,可产生六次谐波频率的机械振动。机械振动是由振动的扭矩引起的,而扭矩的振动则是由谐波电流和基波频率磁场所造成,如果机械谐振频率与电气励磁频率重合,会发生共振进而产生很高的机械应力,导致机械损坏的危险。

2.4 电子设备
电力电子设备对供电电压的谐波畸变很敏感,这种设备常常须靠电压波形的过零点或其它电压波形取得同步运行。电压谐波畸变可导致电压过零点漂移或改变一个相间电压高于另一个相间电压的位置点。这两点对于不同类型的电力电子电路控制是至关重要的。控制系统对这两点(电压过零点与电压位置点)的判断错误可导致控制系统失控。而电力与通讯线路之间的感性或容性耦合亦可能造成对通讯设备的干扰。计算机和一些其它电子设备,如可编过程控制器(PLC),通常要求总谐波电压畸变率(THD)小于5%,且个别谐波电压畸变率低于3%,较高的畸变量可导致控制设备误动作,进而造成生产或运行中断,导致较大的经济损失。

2.5 开关和继电保护
像其它设备一样,谐波电流也会引起开关之额外温升并使基波电流负载能力降低。温升的提高对某些绝缘组件而言会降低其使用寿命。旧式低压断路器之固态跳脱装置,系根据电流峰值来动作,而此种型式之跳脱装置会因馈线供电给非线性负载而导致不正常跳闸。新型跳脱装置则根据电流的有效值(RMS)而动作。保护继电器对波形畸变之响应很大程度取决于所采用的检测方法。目前并没有通用的准则能用来描述谐波对各种继电器的影响。然而,可以认为目前在电网上一般的谐波畸变不会对继电器运行造成影响。

2.6 功率因数补偿电容器
电容器与其它设备相较有很大区别,电容器组之容抗随频率升高而降低,因此,电容器组起到吸收高次谐波电流的作用,这将导致电容器组温升提高并增加绝缘材料的介质应力。频繁地切换非线性电磁组件如变压器会产生谐波电流,这些谐波电流将增加电容器的负担。应当注意的是熔丝通常不是用来当作电容器之过载保护。由谐波引起的发热和电压增加意味着电容器使用寿命的缩短。在电力系统中使用电容器组时,因其容性特点在系统共振情况下可显著的改变系统阻抗。必需考虑系统产生谐振的可能性。系统谐振将导致谐波电压和电流会明显地高于在无谐振情况下出现的谐波电压和电流。

2.6.1 谐波与并联谐振
变速驱动器产生的谐波电流,在经由电容器组电容和电网电感形成的并联谐振回路,可被放大到10-15倍。被放大之谐波电流流经电容器可导致其内部组件过热。需注意的是,在相同电流幅值条件下高频谐波电流所造成之损失要高于基波频率电流。

2.6.2谐波与串联谐振
在上**电网系统电压如发生波形畸变的情况下,由电容器组之电容和供电变压器之短路电感形成的串联谐振回路会吸引高次谐波电流流入电容器,串联谐振可导致在变压器的低压侧出现高的波形畸变。

2.6.3建议
不论何时,只要有非线性负载(直流驱动器、换相器、UPS、及所有整流器)连接到母线上,而又打算在母线上连接电容器组,此时设计无功功率补偿系统,一定要倍加小心。为避免在连接电容器组之系统产生并联或串联谐振,应采用滤波或调谐式电容器组。

在那些电管部门对谐波量有限制的地方,通常安装滤波电容器组是必须的,以满足例如IEEE标准519-1992或Engineering Recommendation G5/3上标明之要求。典型的滤波电容器组设置五次、七次、十一次谐波等3个滤波分支路。滤波分支路的数量取决于要吸收的谐波量和需要补偿的无功量。在某些情况下,甚至一个滤波分支路就可满足电压畸变之限制和目标功率因数。为了设计滤波电容器组,应对会产生谐波的负载进行调查及整合,对既设工厂而言进行实地谐波测量是*理想的方式。

根据IEEE519-1992标准,单次谐波电压畸变率允许值为基波电压的3%。例如,某些母线在不加电容器的情况下由非线性负载所引起之单次谐波电压畸变,测量值低于3%,那么就可以将任何电气设备连接到此母线上而无须顾忌。然而,请注意,不论什么时候,只要把不带电抗器的电容器组连到此母线上,就会出现特定的并联和串联谐振频率。如果这一谐振频率与某些谐波频率重合,谐波电流和谐波电压就会被明显放大。

在没有谐波量限制的地方,可以使用调谐式电容器组。但是请记住,在此种情况下,谐波的主要成份都注入到上级电网。调谐式电容器组的典型范例,所需之段数则取决于负载功率因数和目标功率因数。设计调谐式电容器组时,通常须给出电压畸变限制值。给出的低电压典型值举例如下:U3rd=0.5% ; U5th=5% ; U7th=5%。典型的调谐频率是204Hz和189Hz,分别与6%的电抗器和7%的电抗器相对应。与使用6%的电抗器相比,7%的电抗器通常允许连接更多的非线性负载。设计时要考虑电抗器铁芯的线性度,使其涌流时以及在额定电压畸变情况下不会出现饱和状态。
当设计无功电力补偿系统时,假如设计一个新商业大楼,如果不知道大楼将有什么样的负载,通常较合理的作法是采用额定电压高于系统电压 (例如在400V系统采用525V电容器) 的电容器组。使用较高额定电压的电容器则在将来负载会产生谐波时,仅须增设电抗器而不须更换电容器组。无论何时,只要怀疑电容器组周围温度可能会超出其允许的*高温度上限值时,则建议在电容器配电盘内加设冷却风扇。还要提请注意的是在采用调谐式或滤波电抗器的地方,一定要使用强迫冷却方式,因为与电容器组相比,电抗器会产生更大的热量。

3. 电力系统谐波谐振案例和解决方法
3.1 案例1
在一个相当大的办公大楼内,发现许多电容器组因过热而损坏,损坏的是连接在负责供电给计算机不间断电源设备(UPS)变压器之自动功率因数控制电容器组上。

为找出损坏的原因,对谐波进行了测量。测得的供电变压器基波和谐波电流以及电压的总谐波畸变率 (THD)。结果可知,当两段50KVAR投入后出现严重的并联谐振,将30A的十一次谐波电流(由UPS产生的)放大到183A(相当于大约10倍的放大系数),同时电压的THD值也增加到19.6%。 当2段50KVAR电容器组投入,电容器上电流的有效值(RMS)是364A,相当于2.5倍的额定电流流经电容器,这足以说明电容器损坏的原因。根据IEC831-1 (低压电容器标准),电容器的容许电流是额定电流的1.3倍。

因为从谐波测量结果中可确认在供电系统中存有谐振现象,因此重新设计了无功补偿系统,并决定使用带7%电抗器的调谐式电容器组。请注意,装上调谐电容器组后,无论投入几段皆可避免谐振,而且也不会放大任何谐波电流,为了验证此新设计,在*大非线性负载下对调谐电容器组进行测试,结果证明谐波电流如期望般并无放大现象。

3.2 案例2
单线系统图是从一个塑模公司的供电系统中取出的,这个固定式的150KVAR电容器组经常故障。为了找出频繁故障的原因,进行了实地谐波测量,结果如图9所示。测量得的电容器组有效电流值是371A,主要谐波分量是十一次谐波。测得的电容器有效电流相当于额定电流的1.71倍,这样的测量结果当然能够解释为什么电容器总是出故障。由于总电压谐波畸变率即使在不用电容器的情况下也高达8.1%。此公司现考虑采用滤波电容器组进行无功补偿,以保证所有用电设备皆有良好的供电质量。

3.3 案例3
单线系统图中电容器组是某家公司所购置的。此公司购置电容器组的决定是由于公司电力系统功率因数太差不符合要求被罚款所致。经计算,总共需要400KVAR 来改善功率因数才能达到不被罚款的规定值。

在对电容器组进行测量后可知,工厂供电用的500KVA变压器稍有些过载,五次谐波电流为62A,是基波电流的9%。当电容器组投入时,由于无功得到补偿,基波电流降到492A,可是五次谐波电流却被放大到456A,是基波电流的93%,总电压畸变率增加到16.2%,此种供电品质是负载所完全不能接受。因此,*后是将电容器组切离,并订购新的调谐式电容器组进行替换。

3.4 案例4
此案例中之测量主要的目的是要确定采用什么样的无功补偿系统才能改善功率因数,使其达到不被罚款要求值。从测量的结果可以看出,电压发生了严重畸变,测得电压之THD是12%。显然,不带电抗器的电容器组是不能使用的,由于较高的电压畸变,所以决定使用滤波电容器组进行无功功率补偿。

当所有的滤波器都投入使用时,电压THD从12%降到成为2%,该值被认为是低电压供电系统的很好的结果。还应提请注意的是由于无功功率得到补偿,基波供电电流出现了大幅度下降,大约下降520A。同时大量的谐波电流被有效吸收,供电电流达到了规定的谐波限定值。

3.5 案例5
取自一家大型造纸厂的供电系统的案例。该供电系统装有一个10MVAR、20KV电容器组。电容器组经常因过电流继电器动作而发生非正常跳闸。谐波测量显示当电容器组合闸时在20KV的母线上出现10.8%异常高的电压畸变,五次谐波电流含量并高达135A。 当切断电容器组后,电压畸变下降到1.2%,五次谐波电流降为6A。在此中压谐振情况下,第五次谐波电流放大系数高达22。

对电容器组进行重新设计,设计时将造纸厂直流驱动器产生的谐波电流考虑进去。经计算机对若干可能出现的电网情况进行仿真后,证明加上五次滤波器是*佳方案。为应付于电容器上可能升高之电压,对原有的电容器组进行修改。方法是再增加一个电容器组,与原有的电容器组串联,并安装一台空心滤波电抗器。

3.6 案例6
当公用电网在变电所使用不带调谐电抗器的电容器组时,如果变电所供电给带有产生谐波负载的工业用户,中压供电电网被认为是符合标准的电压畸变,就有存在谐振的可能性。

表示的是在某一变电所11KV母线上所测量的电压波形,此变电所安装的电容器组没有配置调谐电抗器。由图可见,由于谐振,电压发生严重畸变,五次谐波电压分量经测量高达基本波的22.2%。如果此电压供电给MV/LV变压器,而此变压器于低压侧接有电容器组,则电容器组之电容与变压器之短路电感形成一串联谐振回路而使电容器吸收大量谐波电流,而发生电容器过载。

3.7 案例7
是于一条供电给数家中、小型工厂的11.4KV供电母线上进行20小时的电压THD值测量,显然地,公用电网上之电容器组导致了将工厂非线性负载所产生的谐波放大。之所以对此母线的谐波进行测量,是因在一个于低压侧装有滤波电容器组的工厂经常遭受非正常跳闸的困扰。谐波分析证明畸变主要是由五次谐波所造成,测量期间第五次谐波电压的*大值达8.1%,超出了公用电网所规定之3%限定值,利用测得的畸变量进行计算,计算出低压侧滤波器的RMS电流,明显地超过了五次滤波器电流继电器的热保护设定值,如果不采取措施消除11.4KV系统的谐振,则低压侧的滤波器应改成带6%或7%电抗器的调谐式电容器组,如此一来将导致较高的谐波电流流入公用供电系统,进而恶化11.4KV的供电质量。

3.8 案例8
是一个供电给7家工厂之变电站单线系统图,变压器TR1-TR6的负载部份为非线性负载,而变压器TR7则仅为一般的AC负载。无功电力补偿方式是用不带电抗器的自控电容器组进行无功补偿。电容器组制造商被告知有几台变压器上的好几个电容器和熔断器被烧坏,因此对谐波进行了测量。特别注意的是变压器TR7也由于20KV供电母线上的5%畸变而受到供电质量低下的困扰。


在为工厂重新设计无功补偿系统的同时,决定应让在产生谐波的变压器上对谐波进行吸收,因此应采用滤波器。根据每台变压器上的负载,设计滤波电容器组的无功功率,分支数量和调谐频率。当然,无需更换现有变压器TR7的电容器组,因为这个变压器只有线性负载。请注意,由于在变压器TR1-TR6的低压侧的滤波器降低了谐波注入20KV电网,使谐波电压畸变由5%降到0.8%,因此,变压器TR7的供电质量变的很好并控制在规定的范围内。

4 结论
由大部份案例中可发现,在公共电网中之谐波畸变水平达到所规定临界值以前,谐波问题便已明显地出现在工业工厂或商业用户中。在用户系统中,若使用不串接电抗器之电容器组并造成谐振情况,则于装有电容器组之母线上将导致高电压畸变。用户设备中一些诸如电动机过热,变压器过热及电子设备误动作的事情都会发生。因此对电力用户而言,迫切需要的是了解可能发生之谐波问题,并妥善处理使谐波畸变限制在合理范围内。

计算机仿真计算可针对各种不同电网情况进行快速分析,其输出结果可当作设计之依据。无论如何,现场之测量不但可以提供可贵之谐波信息,并可当作计算机仿真之输入值,或者可用来验证计算结果之准确性。

沪公网安备 31011302004101号